

Multi-level annotation of linguistic data with MMAX2

Christoph Müller and Michael Strube

EML Research gGmbH, Heidelberg

Abstract

This paper describes how richly annotated corpora can be created with the
annotation tool MMAX2. The description is from the point of view of
Computational Linguistics, a discipline where annotated corpora are often used
as resources for software development. The paper outlines the important steps in
the life cycle of an annotation and details how the tool MMAX2 can be
employed in each of them.

1 Introduction

In Corpus Linguistics, corpora are used as machine-readable collections of
naturally-occurring language data, serving as the empirical basis of frequency,
collocation, and other analyses. But corpora are also used in other, related
disciplines. Researchers in Computational Linguistics and Natural Language
Processing (NLP) are developing software for automatically processing written
and spoken natural language. This software often takes the form of components,
i.e. self-contained modules for solving a particular well-defined and limited task.
Some common tasks are

• determination of the word class / part of speech (POS) for words in a text
(POS tagging, cf. Jurafsky and Martin 2000: 287-321),

• determination of word senses, incl. the disambiguation of homonymous
and polysemous words (word sense disambiguation, cf. Manning and
Schütze 1999: 229-264), and

• detection of anaphoric expressions and identification of their antecedents
(anaphor / coreference resolution, cf. Mitkov 2002).

Being able to solve these tasks automatically is not an end in itself, but rather a
prerequisite for building systems for solving more complex tasks like machine
translation (cf. Nirenburg et al. 2003), summarization (cf. Mani 2001), or
question answering (cf. Maybury 2004). A popular approach towards the
development of NLP components like automatic POS taggers, word sense

198 Christoph Müller and Michael Strube

disambiguators, and coreference resolvers is the use of supervised machine
learning methods. Essentially, these methods analyse a corpus of individual
examples of a particular task, and automatically derive strategies for solving it.
Often, these strategies take the form of rules, or tree-like structures consisting of
hierarchical sequences of if-then statements. The important point is that it is not
sufficient to have a corpus of examples only. In order to be able to create rules
for assigning POS tags or word senses to words, or antecedents to anaphoric
pronouns, machine learning methods require the examples to also contain the
correct solution. In other words, the application of supervised machine learning
depends on the availability of corpora that are enriched with additional
information. The process and result of adding this information to an existing
corpus is called annotation.
 In Computational Linguistics, annotated corpora are not only used for the
development of NLP components, but also for their evaluation, i.e. for
measuring their performance. This is done by comparing the (potentially wrong)
solutions of a given component with the correct solutions contained in the
corpus, and calculating a numerical index (e.g. precision and recall, or
accuracy) for the degree of agreement between both.
 Apart from being used as a resource for the development of NLP
components, an obvious advantage of annotated corpora is that the explicit
marking of linguistic phenomena makes them accessible for automatic analysis.
While an unannotated corpus can only be analysed on the surface, i.e. on the
word level, an annotated corpus can also access deeper linguistic phenomena
and incorporate them into quantitative (frequency counts, collocations) and
qualitative (e.g. KWIC indices) analyses.
 The creation of an annotated corpus is a laborious, time-consuming and
expensive task, which requires both intellectual and manual effort on the part of
the human annotators. Specialized annotation tools are normally employed in
order to support the annotators. One such tool is MMAX2 (http://mmax.eml-
research.de), which has been developed in the context of real-world annotation
projects in Computational Linguistics.1
 MMAX2 is a highly customizable tool for creating, browsing, visualizing
and querying linguistic annotations on multiple levels. The screenshot below
gives a first impression of the MMAX2 main window. It shows a small part of
dialog Bed017 of the ICSI Meeting Corpus (Janin et al. 2003), a collection of
transcribed multi-party dialogs. This example will be used throughout the
remainder of this paper. The dialogs in the ICSI Meeting Corpus are structured
as a sequence of segments, each of which is associated with the ID of a speaker.
In the display, each segment is given in one line, with the speaker ID in front.

1 The development of MMAX2 has been funded by the Klaus Tschira Foundation

(http://www.ktf.villa-bosch.de).

Multi-level annotation of linguistic data with MMAX2 199

Some of the annotated elements are shown in square brackets. The lines
connecting some of these elements visualize coreference annotation. All these
features will be described in more detail later.

Figure 1: The MMAX2 annotation tool main window

The main purpose of this paper is to describe how linguistic annotation can be
performed with MMAX2. The description is organized along the lines of a
normal annotation life cycle in Computational Linguistics.

2 The annotation life cycle

There are several crucial steps in the life cycle of an annotation. They include
the preparation of the machine-readable corpus, the definition and formalization
of the annotation task, the manual annotation proper, the checking of the
feasibility of the annotation, and the actual utilization of the completed
annotation. In this section, we describe the capabilities of MMAX2 in each of
these steps.

2.1 Preparing the base data

The first – and very important – step in the creation of an annotated corpus is the
preparation of the data to be annotated. The data model that is used for

200 Christoph Müller and Michael Strube

representing the annotated corpus should be designed in such a way that the
usability and re-usability of the resulting resource is maximized. The data format
should be as simple and theory-neutral as possible. In particular, it should not
introduce arbitrary decisions or implicit assumptions which may hold for one
application of the annotated corpus but which may be problematic for another.
The data representation format should be implemented using a common
standardized data storage format, preferably XML. This way, it is open to the
whole range of XML processing tools available, and less dependent on the
particular software that was used to create it. The corpus should be extensible in
the sense that new annotations can be added to it without interfering with
already existing ones. This implies that annotations should not alter the
underlying corpus in any way. Ideally, they should be physically separated from
it, and only reference it. This is known as the principle of stand-off annotation
(Ide and Priest-Dorman 1996, Thompson and McKelvie 1997). Stand-off
annotation, which is now a quasi-standard for representing annotated corpora,
allows the corpus to contain annotations for several entirely different
phenomena simultaneously. While these different levels of annotation are
physically separated, it should still be possible to relate phenomena on different
levels to each other. This is known as the principle of multi-level annotation.
Apart from other advantages to be outlined below, the physical separation of
annotation levels allows annotation tasks to be distributed to several research
groups with different expertise. After completion of the individual annotation
tasks, the annotations can be combined into one multi-level annotation that a
single group could not have produced.
 Within the MMAX2 data model, the text comprising the corpus to be
annotated is called base data. Each element of the base data is modeled as a
<word> XML element with an obligatory id attribute. The following is a base
data file fragment from dialog Bed017.

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE words SYSTEM "words.dtd">
<words>
...
<word id="word_360">Eva</word>
<word id="word_361">'s</word>
<word id="word_362">got</word>
<word id="word_363">a</word>
<word id="word_364">laptop</word>
<word id="word_365">,</word>
<word id="word_366">she</word>
<word id="word_367">'s</word>
<word id="word_368">trying</word>
<word id="word_369">to</word>
<word id="word_370">show</word>
<word id="word_371">it</word>
<word id="word_372">off</word>

Multi-level annotation of linguistic data with MMAX2 201

<word id="word_373">.</word>
...
</words>

The main function of these <word> elements is to serve as containers for the
base data strings, and to associate a unique identifier with each of them. The
granularity of the base data elements defines the smallest element that an
annotation can be added to. In most cases, going down to the level of
orthographical word should be sufficient, but it is possible to use units like
morphemes, syllables, or even characters instead.
 Elements of the base data are immutable, i.e. the base data file cannot be
modified by the annotation. Annotations are not added to the base data directly,
but in a stand-off manner by means of pointers to (sequences of) base data
elements. In the MMAX2 data model, the actual annotations are contained in so-
called markables. Markables are modeled as <markable> XML elements with
minimally an id and a span attribute. The value of the span attribute is a list of
the identifiers of the base data elements that the markable points to. All
markables representing the same type of information are grouped into so-called
markable levels, each of which is stored in a separate file.
 The most simple type of annotation that a markable can represent is in the
form of freetext attributes. The following is a fragment of the file containing the
markable level 'segment'. The markable shown represents the information that
the sequence from word_360 to word_373 is a connected utterance by the
speaker with id me003.

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE markables SYSTEM "markables.dtd">
<markables xmlns="www.eml-research.de/ns/segment">
...
<markable id="markable_46" span="word_360..word_373" participant="me003"/>
...
</markables>

The name of the markable level is encoded in each markable file's XML name
space declaration.

2.2 Defining an annotation scheme

The definition of an annotation (or coding) scheme is the next step in any non-
trivial annotation project. The annotation scheme defines how the descriptive
means of the data model should be used to represent the annotations. It is often
complemented by a written annotation manual which serves as a guide for the
annotators. The annotation manual normally contains a general description of
the phenomena to be annotated, along with examples and detailed instructions.

202 Christoph Müller and Michael Strube

In principle, the annotation manual should be as explicit as possible, ideally
leaving no room for interpretations regarding how certain rules should be
applied. If the annotation manual is too imprecise, this may lead to low inter-
annotator agreement (see Section 2.4).
 The MMAX2 data model is based on the assumption that any type of
annotation can be represented by associating individual markables with
attributes, and by linking several markables by means of relations. The attributes
and relations that should be available for the annotation of a particular markable
level are defined in an annotation scheme XML file.
 Apart from the simple freetext attributes (see above), which can take an
arbitrary string as their value, the MMAX2 data model also supports nominal
attributes. Nominal attributes can only take one of a pre-defined set of possible
values. The following annotation scheme fragment defines the attribute tag as a
nominal attribute displayed as a drop-down list in the MMAX2 GUI. The set of
defined values follows the Penn Treebank tag set (cf. Manning and Schütze
1999: 141f.).

<?xml version="1.0" encoding="US-ASCII"?>
<annotationscheme>
<attribute id="tag_level" name="tag" type="nominal_list"
 description="tag_level.html">
<value name="none" description="default_tag.html"/>
<value name="cc" description="cc_tag.html"/>
<value name="cd" description="cd_tag.html"/>
<value name="dt" description="dt_tag.html"/>
<value name="ex" description="ex_tag.html"/>
<value name="fw" description="fw_tag.html"/>
<value name="in" description="in_tag.html"/>
<value name="jj" description="jj_tag.html"/>
<value name="jjr" description="jjr_tag.html"/>
<value name="jjs" description="jjs_tag.html"/>
<value name="ls" description="ls_tag.html"/>
<value name="md" description="md_tag.html"/>
<value name="nn" description="nn_tag.html"/>
<value name="nns" description="nns_tag.html"/>
<value name="nnp" description="nnp_tag.html"/>
<value name="nnps" description="nnps_tag.html"/>
<value name="pdt" description="pdt_tag.html"/>
<value name="pos" description="pos_tag.html"/>
<value name="prp" description="prp_tag.html"/>
...
</attribute>
...
</annotationscheme>

The (optional) description attributes in the example contain references to
HTML files with information about the respective attribute or value. During

Multi-level annotation of linguistic data with MMAX2 203

annotation, the annotators can view this information within the MMAX2 GUI
without having to look up definitions in a printed annotation manual.
 The following is a fragment of the markable level 'POS' which utilizes the
above definition to associate a POS tag with each word.

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE markables SYSTEM "markables.dtd">
<markables xmlns="www.eml-research.de/ns/pos">
...
<markable id="markable_219" span="word_360" tag="nnp"/>
<markable id="markable_220" span="word_361" tag="vbz"/>
<markable id="markable_221" span="word_362" tag="vbd"/>
<markable id="markable_222" span="word_363" tag="dt"/>
<markable id="markable_223" span="word_364" tag="nn"/>
<markable id="markable_224" span="word_365" tag="inp"/>
<markable id="markable_225" span="word_366" tag="prp"/>
<markable id="markable_226" span="word_367" tag="vbz"/>
<markable id="markable_227" span="word_368" tag="vbg"/>
<markable id="markable_228" span="word_369" tag="to"/>
<markable id="markable_229" span="word_370" tag="vb"/>
<markable id="markable_230" span="word_371" tag="prp"/>
<markable id="markable_231" span="word_372" tag="rp"/>
<markable id="markable_232" span="word_373" tag="inp"/>
...
</markables>

Although there is only one attribute associated with each markable in the above
example, markables can in principle have many more attributes.
 While attributes are capable of adding descriptive information to individual
markables, relations are used to model structural or associative relations
between two or more markables. Currently, the MMAX2 data model supports
relations of the types markable-set and markable-pointer. A relation of the
former type can express undirected relations between any number of markables.
It can be interpreted as set-membership, i.e. markables having the same value in
a relation of the type markable-set constitute an unordered set. A relation of the
type markable-pointer, on the other hand, can express a directed relation
between one source and one or more target markables. As the name suggests,
this relation can be interpreted as the source markable pointing to its target
markable(s). Both types of relations are defined in formal terms only, so that
they can be associated with any kind of semantic interpretation as required. A
common way to use a markable-set relation is for the annotation of coreference,
i.e. for representing the information that two or more markables refer to the
same entity.
 The MMAX2 annotation scheme is also capable of expressing dependencies
between attributes or relations. The usual type of dependency is that the

204 Christoph Müller and Michael Strube

availability of one or more attributes or relations depends on the value of some
other attribute.
 Consider the example of the role of so-called pleonastic it in coreference
annotation. Pleonastic (or non-referential) it appears in constructions like 'It is
raining'. While it makes sense to annotate these cases on the coreference level as
special cases of pronoun use, they should not be allowed to participate in any
coreference relations, because this attribute does not apply to them. This type of
constraint can be expressed in the annotation scheme file by means of a special
attribute. The following annotation scheme fragment for the markable level
'coreference' defines the attribute exp_type as a nominal attribute displayed in
the form of a row of buttons. The attribute coref_class is defined as a
dependent markable-set relation, which is rendered by means of curved green
lines. The dependency is expressed by means of the next attribute, which causes
the coref_class attribute to be available only if the current value of the
exp_type attribute is noun_phrase.

<?xml version="1.0" encoding="US-ASCII"?>
<annotationscheme>
<attribute id="exp_type_attribute" name="exp_type"
type="nominal_button"
 description="exp_type_level.html">
<value name="none" description="default_tag.html"/>
<value name="noun_phrase" description="np_type.html"
 next="coref_class_attribute"/>
<value name="pleonastic_it" description="pleoit_type.html"/>
...
</attribute>

<attribute id="coref_class_attribute" name="coref_class"
type="markable_set"
 style="lcurve" color="green">
<value name="coref_class"/>
</attribute>
...
</annotationscheme>

Constraining the availability of attributes and relations to only those that make
sense in a given situation is a means to ensure the quality and consistency of the
annotation. At the same time, it also provides some guidance for the annotator.
 The following is a fragment from the markable level 'coreference',
containing the information that the noun phrases 'Eva' and 'she' and 'a laptop' and
'it' respectively are coreferent.

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE markables SYSTEM "markables.dtd">
<markables xmlns="www.eml-research.de/ns/coreference">
...
<markable id="markable_953" span="word_360" exp_type="noun_phrase"

Multi-level annotation of linguistic data with MMAX2 205

 coref_class="set_3"/>
<markable id="markable_954" span="word_363..word_364"
exp_type="noun_phrase"
 coref_class="set_4"/>
<markable id="markable_955" span="word_366" exp_type="noun_phrase"
 coref_class="set_3"/>
<markable id="markable_956" span="word_371" exp_type="noun_phrase"
 coref_class="set_4"/>
...
</markables>

Note that the exp_type attribute can be rather general, only differentiating
between none, noun_phrase, and pleonastic_it, because more fine-grained
information is already available on the markable level 'POS'.

2.3 Creating an annotation

Performing the actual annotation is demanding, both intellectually and
physically. Both aspects can be directly translated into requirements for the
graphical user interface (GUI) of the employed annotation tool.
 The GUI should be customizable in such a way that all and only the relevant
information is displayed to the annotator. What counts as relevant can be
dependent on the annotation task itself, but also on subjective factors like the
level of experience of the annotators. Irrelevant information can easily distract
them, while too little information can render the task unnecessarily hard,
especially for less experienced annotators.
 Apart from the intellectual demands, corpus annotation is essentially manual
labor. Using mainly the mouse, the annotator interacts with the display, which
serves as the interface to the data. Typical forms of user actions include

• selecting portions of text by clicking a mouse button and dragging the
mouse over a part of the display,

• clicking parts of the display in order to perform some action on the items
displayed there, and

• selecting from drop-down lists or rows of buttons the values for certain
attributes.

Given the fact that for a corpus of realistic size and an annotation scheme of
realistic complexity quite a few of these actions have to be carried out, the
performance of the display is extremely important. The main measure of display
performance is the time that it takes for the display to respond to a user action. If
this time is typically above a certain threshold, it can render a tool practically
unusable. This is because even short delays add up in the long run, and, more
importantly, every perceivable delay annoys the annotator.

206 Christoph Müller and Michael Strube

 The MMAX2 annotation tool tries to maximize both the customizability and
the performance of the display by employing a rather elaborate mechanism. It is
based on the distinction between display content (i.e. which text is displayed to
the annotator) and display style (i.e. how this text is displayed).
 The display content is specified by means of a user-modifiable XSL style
sheet. Simple style sheets might only output the base data without any additional
structure. Slightly more refined style sheets can add line breaks at markable
boundaries, e.g. for markables representing structural units like segments.
Markable boundaries can also be visualized by means of so-called markable
handles, i.e. brackets that are inserted in the text directly before and after a
markable. This is particularly useful if several embedded or overlapping
markables exist on either the same or different markable levels. Finally, the
values of nominal markable attributes can also be shown in the display. It is
possible, e.g., to write a style sheet that directly displays the POS tag for each
word in the display. Each MMAX2 document can have any number of style
sheets, each defining a different view on the data. Changes to the display content
require that the style sheet processor is reinvoked. Depending on the size of the
document and the complexity of the style sheet, this can take some time.
However, this does not pose a problem since the display content does not require
frequent updates.
 This is in contrast to the display style which is controlled by markables and
their attributes. For each level, users can customize how markables should be
visualized depending on their attributes and relations. Display parameters
include foreground and background color, size, and font attributes like bold,
italic, underlined, etc. User actions like adding or deleting a markable, adding a
relation between two markables, or modifying the attributes of a markable
require frequent display updates. MMAX2 contains optimized methods for this
type of display modification, which allows for short response times for most
types of user actions.
 One markable at a time can be selected by left-clicking it with the mouse. If
the markable is part of one or more markable relations, these are visualized by
means of lines that are drawn onto the display, connecting the selected markable
to all markables it is related to. The attributes of the currently selected markable
are displayed and can be modified in a special attribute window. The attribute
window renders freetext attributes as editable text boxes, and nominal attributes
as either lists of entries or rows of buttons. The attribute window enforces
dependencies between attributes by only displaying those attributes and possible
values that are defined in the annotation scheme for the current attribute
constellation. If the annotator modifies the value of an attribute, the attribute
window is immediately updated to reflect any changes resulting from that
modification. By default, modifications in the attribute window are not
immediately applied to the current markable, but only after the annotator clicked

Multi-level annotation of linguistic data with MMAX2 207

a special 'Apply' button. An 'Auto-Apply' mode is also available in which each
modification is immediately applied. For more simple types of annotations (or
more experienced annotators), this can reduce the number of required mouse
clicks considerably.

2.4 Checking inter-annotator agreement

Another very important step in the life cycle of an annotation is to check the
inter-annotator agreement. Depending on the difficulty of the task, annotation
can involve non-trivial interpretation on the part of the annotator, so that
different annotators can hardly ever be expected to produce completely identical
annotations. Inter-annotator agreement is a quantitative index for the degree of
agreement between the annotations produced by two or more annotators on the
same base data, using the same annotation manual. It is commonly calculated
using the Kappa statistic (Carletta 1996). The Kappa statistic is special in that it
takes into account that a certain degree of agreement between the annotations
produced by two or more annotators can also be ascribed to chance.
 If an annotation yields a Kappa value below some critical threshold, and if it
can be ruled out that the lack of agreement between annotators is due to
ambiguities or impreciseness in the annotation manual, this often indicates that
the phenomenon to be annotated is inherently ill-defined, ambiguous or vague.
Then, it may be impossible for the annotators to independently agree upon the
correct solution because no such solution exists. If this is the case, the annotated
data has only limited usability. This is especially true if the annotations are
supposed to be used as the data basis for the development of an NLP
component: If no reasonably objective correct solution does exist for a given
task, there is no point in developing a software component for trying to find it.
 Within MMAX2, the stand-off data model makes it easy to maintain several
annotations of the same base data simultaneously for comparison. MMAX2 also
contains a special tool for the quantitative and qualitative comparison of
annotations. Means of qualitative comparison for nominal attributes include
simple list-based visualization and highlighting of differences. If only two
annotations are compared, differences can also be displayed in the form of a
confusion matrix. The tool can also calculate the Kappa statistic for nominal
attributes. Markable relations can be compared qualitatively by simultaneously
visualizing the markable sets created by different annotators. For quantitative
comparison of markable sets, the inter-annotator agreement can also be
determined by calculating a statistical measure that takes the special properties
of sets into account (Vilain et al. 1995).

208 Christoph Müller and Michael Strube

2.5 Using the annotation

An annotated corpus is not an end in itself, but rather a resource to be used for
various tasks. The methods to be used for a given task depend on the complexity
of the latter. We distinguish three types of methods with different capabilities.
Corpus querying deals with simply retrieving examples of certain phenomena
from the corpus. Corpus transformation has to do with converting the corpus
into other formats. Finally, corpus processing is the most powerful method,
dealing with any type of automatic corpus manipulation beyond what can be
accomplished with the first two methods.

2.5.1 Corpus querying

The most simple use an annotated corpus can be put to is exploratory data
analysis or browsing. The annotation tool should support this by allowing the
user to query the annotation, and to visualize query results. An important
requirement of querying is that users should be allowed to relate diverse
phenomena in a fairly unrestricted and ad-hoc way. In general, querying should
be as simple as possible, thus facilitating exploratory data analysis also for non-
expert users.
 The MMAX2 annotation tool comprises the multi-level query language
MMAXQL which allows the formulation of queries that can access and relate to
each other markables from diverse levels. The focus of MMAXQL lies on
simplicity and ease of use, rather than maximal expressive power. It allows
queries of low and medium complexity to be formulated easily, but leaves more
complicated things to be solved by other means (see below).
 A query in MMAXQL consists of a sequence of query tokens which are
combined by means of relation operators. Each query token queries exactly one
base data element or one markable.
 Base data elements can be queried by matching regular expressions. Each
base data query token consists of a regular expression in single quotes, which
must exactly match a base data element. Sequences of base data elements can be
queried by simply concatenating several space-separated tokens. The query

 ’[Tt]he [A-Z].+’

will match sequences beginning with a definite article and a word with a capital
first letter.
 Markables can be queried by means of string matching and attribute-value
combinations. A markable query token has the form

 string/conditions

Multi-level annotation of linguistic data with MMAX2 209

where string is an optional regular expression and conditions specifies
which attribute(s) the markable should match. The most simple condition is just
the name of a markable level, which will match all markables on that level. If a
regular expression is also supplied, the query will return only the matching
markables. The query

 [Aa]n?\s.*/coreference

will return all markables from the level 'coreference' beginning with the
indefinite article.
 The conditions part of a markable query token can indeed be much more
complex. A main feature of MMAXQL is that redundant parts of conditions can
optionally be left out, making queries very concise. For example, the markable
level name can be left out if the name of the attribute accessed by the query is
unique across all markable levels in the MMAX2 document. Thus, the query

 /!coref_class=empty

can be used to query markables from the level 'coreference' which have a non-
empty value in the coref_class attribute, granted that only one attribute of this
name exists on all markable levels. The same applies to the names of nominal
attributes if the value specified in the query unambiguously points to this
attribute. Thus, the query

 /nnp

can be used to query markables from the level 'POS' which have the value nnp
(proper name), granted that there is exactly one nominal attribute with the
possible value nnp. Several markable levels can be accessed in one query by
combining two or more query tokens with a relation operator specifying the
relation that should hold between both. The results of these queries consist of
markable tuples with one element for each query token. Thus, the following
query

 /{prp,prp$} = /!coref_class=empty

returns 2-place markable tuples where the first markable comes from the level
'POS' and the second from the level 'coreference'. The first markable has a tag
attribute value of either prp or prp$, the second has a non-empty value in the
coref_class attribute. The equals sign specifies that the span of the markables
in each tuple should be identical. Thus, the query combines information from the
levels 'POS' and 'coreference' to retrieve personal and possessive pronouns that

210 Christoph Müller and Michael Strube

are part in coreference relations. Other structural relations besides identity are
left and right alignment, embedding, or overlap.

2.5.2 Corpus transformation

Corpus transformation may be necessary if annotations have to be converted
from their original source format into some different target format. This target
format might be the data format required by another annotation tool or by some
other program. By supporting conversions into other data formats, an annotation
tool increases the usability of the annotations that are created with it.
 MMAX2 supports the transformation of annotated corpora by means of
XSL. The tool's style sheet engine provides some special functions for handling
stand-off annotation as realized in MMAX2. These functions are integrated into
the style sheet engine in such a way that they can be used like normal XSL
functions.
 The following example shows how a MMAX2 document can be transformed
into an HTML document by means of an XSL style sheet. HTML is a popular
target format for visualizing annotated corpora because it is very common and
can be easily viewed both locally and over the Internet.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns:mmax="org.eml.MMAX2.discourse.MMAX2DiscourseLoader"
 xmlns:meta="www.eml-research.de/ns/meta"
 xmlns:pos="www.eml-research.de/ns/pos"
 xmlns:coreference="www.eml-research.de/ns/coreference"
 xmlns:segment="www.eml-research.de/ns/segment">
 <xsl:output method="html" indent="no"/>

 <xsl:template match="words">
 <html><body style="font-family:Arial;">
 <table>
 <xsl:apply-templates/>
 </table>
 </body></html>
 </xsl:template>

 <xsl:template match="word">
 <xsl:apply-templates select="mmax:getStartedMarkables(@id)" mode="opening"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="text()"/>
 <xsl:apply-templates select="mmax:getEndedMarkables(@id)" mode="closing"/>
 </xsl:template>

 <xsl:template match="segment:markable" mode="opening">
 <xsl:text disable-output-escaping="yes"><tr></xsl:text>
 <td>
 <xsl:value-of select="@participant"/>
 </td>
 <xsl:text disable-output-escaping="yes"><td></xsl:text>
 </xsl:template>

Multi-level annotation of linguistic data with MMAX2 211

 <xsl:template match="segment:markable" mode="closing">
 <xsl:text disable-output-escaping="yes"></td></xsl:text>
 <xsl:text disable-output-escaping="yes"></tr></xsl:text>
 </xsl:template>

 <xsl:template match="meta:markable" mode="opening">
 <xsl:text disable-output-escaping="yes"></xsl:text>
 </xsl:template>

 <xsl:template match="meta:markable" mode="closing">
 <xsl:text disable-output-escaping="yes"></xsl:text>
 </xsl:template>

 <xsl:template match="coreference:markable" mode="opening">
 [
 </xsl:template>

 <xsl:template match="coreference:markable" mode="closing">
]
 </xsl:template>

 <xsl:template match="pos:markable" mode="closing">
 <xsl:if test="mmax:inMarkableFromLevel(@id,'pos','coreference')">
 _{<xsl:value-of select="@tag"/>}
 </xsl:if>
 </xsl:template>

</xsl:stylesheet>

If the above style sheet is stored in a file named mmax2html.xsl, the command

org.eml.MMAX2.Process -in Bed017.mmax -style mmax2html.xsl -out out.html

can be used to create an HTML file from dialog Bed017. The resulting HTML
file (out.html) is rendered as in Figure 2 (overleaf).

2.5.3 Corpus processing

If the annotations are to be used as a resource for the development of NLP
components, more complex operations than simple querying or transformation
are normally required. This is also true for very complex or specialized corpus
queries. Therefore, the annotation tool should also supply a flexible interface
that allows unrestricted access to the annotation by means of a common
programming language.
 The MMAX2 Discourse API allows access to MMAX2 documents from the
programming language Java. It takes advantage of the fact that MMAX2 itself is
entirely written in Java. When using the annotation tool, users do not have to
deal with the XML files directly. Instead, the tool parses the files comprising a
MMAX2 document, and resolves the various relations between markables in the

212 Christoph Müller and Michael Strube

Figure 2: Possible HTML rendering of a MMAX2 document, viewed in web
browser

same or different files. The MMAX2 Discourse API supplies the same conven-
ience for dealing with MMAX2 documents outside the annotation tool. The
Discourse API defines Java classes that serve as wrappers around elements of
the annotation. The most important of these classes are MMAX2Discourse,
MarkableLevel, Markable, and MMAX2DiscourseElement. The latter class is
used for wrapping base data elements. The following code fragment
demonstrates how an instance of the class MMAX2Discourse can be created from
a MMAX2 document.

MMAX2Discourse discourse = MMAX2Discourse.buildDiscourse("Bed017.mmax");

The object discourse can then be used as the single entry point to the entire
annotated corpus. The class MMAX2Discourse contains basic methods for
retrieving all base data elements in the corpus. Access to markables is a bit more
complex and consists of two steps. The first step is to identify and retrieve the
required markable level. Markable levels are identified by their names, which
must be unique within a MMAX2 document. The following code fragment
retrieves the markable level 'coreference ' (assuming that the discourse object
has been created as described above). The second parameter (false) controls
the behavior of the API in case a markable level with the required name cannot
be found.

MarkableLevel corefLevel =
 discourse.getMarkableLevelByName("coreference",false);

Multi-level annotation of linguistic data with MMAX2 213

Access to individual markables on the markable level 'coreference ' is then
provided by various methods. It is possible to retrieve all markables on a level,
or only those that span a particular base data element. The latter method is used
in the following example to retrieve all coreference markables whose span
contains the base data element word_360 (i.e. the token 'Eva'). The second
parameter specifies that the returned list of markables should be sorted in
discourse order.

ArrayList mList = corefLevel.getMarkablesAtDiscourseElementID("word_360",
 new DiscourseOrderMarkableComparator());

The above code fragment will return a list containing exactly one markable.
Nominal attributes can be accessed by means of methods defined in the
Markable class. Assuming that corefMarkable is an instance of class
Markable, the following code fragment can be used to retrieve the markable's
exp_type value. The second parameter ("none") specifies the value to return if
the required attribute is undefined for the markable.

String exp_typeValue = corefMarkable.getAttributeValue("exp_type","none");

The MMAX2 API also defines wrappers for elements related to the annotation
scheme, including MMAX2AnnotationScheme, MMAX2Attribute, MarkableRelation, and
MarkableSet. They are required when accessing markables based on their
relations. The following code fragment demonstrates how the markable set
defined by the coref_class attribute can be retrieved for a given markable,
corefMarkable, and how the list of all markables (including corefMarkable) can
be accessed.

MMAX2AnnotationScheme annoScheme = corefLevel.getCurrentAnnotationScheme();
MMAX2Attribute corefAttribute =

 annoScheme.getMMAX2AttributeByName("coref_class");
MarkableRelation corefRelation = corefAttribute.getMarkableRelation();
MarkableSet corefSet =
 corefRelation.getMarkableSetContainingMarkable(corefMarkable);
ArrayList corefMarkables = corefSet.getMarkables();

3 Conclusion

This paper described how the annotation tool MMAX2 can be used to create
richly annotated, multi-level corpora. The description focused on the creation of
corpora in Computational Linguistics. The tool has already been applied for the
creation of several annotations which are used as resources for the development
of NLP components. Annotated phenomena include POS tags, word senses,
coreference, disfluencies (in transcribed spoken language), grammatical

214 Christoph Müller and Michael Strube

dependency relations, and others. In the near future, it is also planned to employ
the tool for the creation of a resource for automatic summarization. While all
these applications are mostly NLP-related, it should have become clear that both
the MMAX2 data model and the tool itself are sufficiently flexible to be used for
other types of applications as well.

List of References

Carletta, J. (1996): "Assessing agreement on classification tasks: The kappa
statistic", Computational Linguistics 22(2), 249-254.

Ide, N. & G. Priest-Dorman (1996): "The corpus encoding standard". Available
at <http://www.cs.vassar.edu/CES>.

Janin, A., D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan, B. Peskin, T.
Pfau, E. Shriberg, A. Stolcke & C. Wooters (2003): "The ICSI Meeting
Corpus", Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, Hong Kong, April 2003. 364-367.

Jurafsky, D. & J.H. Martin (2000): Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Upper Saddle River, NJ: Prentice Hall.

Manning, C.D. & H. Schütze (1999): Foundations of Statistical Natural
Language Processing. Cambridge, MA: MIT Press.

Mani, I. (2001): Automatic Summarization. Amsterdam: John Benjamins.
Maybury, M.T. (ed.) (2004): New Directions in Question Answering. Cam-

bridge, MA: MIT Press.
Mitkov, R. (2002): Anaphora Resolution. London: Longman.
Nirenburg, S., H. Somers & Y. Wilcks (eds.) (2003): Readings in Machine

Translation. Cambridge, MA: MIT Press.
Thompson, H. S. & D. McKelvie (1997): "Hyperlink semantics for standoff

markup of read-only documents", Proceedings of SGML Europe ’97,
Barcelona, Spain, May 1997.

Vilain, M., J. Burger, J. Aberdeen, D. Connolly & L. Hirschman (1995): "A
model-theoretic coreference scoring scheme", Proceedings of the 6th
Message Understanding Conference (MUC-6), San Mateo, CA: Morgan
Kaufmann. 45-52.

