
MMAX2 Annotation Tool

Style Sheet Guide

c© Christoph M̈uller

EML Research gGmbH

http://mmax.eml-research.de

1st February 2005

Contents

1 About this Document 2

2 Introduction 3

3 Simple Style Sheets 5
3.1 A Basic Style Sheet Template . 5

4 More Complex Style Sheets 7
4.1 Accessing Markables . 7

4.2 Adding Simple Markable Handles . 7

4.3 Structuring the Display . 10

4.4 Adding Textual Markable Handles . 14

4.4.1 Plain . 14

4.4.2 More Fancy . 15

4.5 More Flexible Style Sheets (updated for version 1.0 beta 4) 16

5 Function Reference (updated for version 1.0 beta 4) 18
5.1 System Functions . 18

5.2 Control Functions (updated for version 1.0 beta 4) . 18

5.3 Functions for Setting Font Attributes . 19

5.4 Markable-Related Functions . 19

5.4.1 Markable-Returning Functions . 19

5.4.2 Functions for Adding Markable Handles . 20

5.4.3 Other Functions . 21

1

1 About this Document

This document describes how XSL style sheets are used to create the display of the MMAX2 annotation

tool. Though writing a style sheet for this purpose is pretty simple, a certain familiarity with XSL is as-

sumed. This document describes mainly those points in which MMAX2 style sheets are different from

’regular’ style sheets. In addition to what is detailed in this document, the whole range of XSL functions

can be used anywhere in a MMAX2 style sheet. Also, the functionality described here is not considered to

be complete. Rather, additional functions are likely to be added in the future. If you have suggestions, we

would like to hear from you!

Important Note: The version of MMAX2 that accompanies this document (1.0 BETA 3 or later) intro-

duces considerable changes to the MMAX2 style sheet engine and the methods supported by it. These

changes have been implemented in order to optimize and simplify the use of style sheets. They also render

superfluous the base data<sentences> and<turns> files that earlier versions required (cf. Section 2). As

a consequence, style sheets from earlier releases (up to and including 1.0 BETA 2), including the ones sup-

plied as samples, will probably not work any more. The sample files supplied with the latest distribution of

MMAX2 have been updated to not use deprecated functionalities any more. If you have written your own

style sheets and run into problems now, please write to mmax@eml-research.de, and we will be happy to

assist you!

2

2 Introduction

The MMAX2 annotation tool uses XSL stylesheets to create different display renderings (orviews) for a

given set of base data files and annotation levels. Depending on the degree of sophistication and the number

of annotation levels, an XSL style sheet might become rather complex. On the other hand, a basic display

can be created with just a few lines.

The style sheets that have have been defined for a given document are associated with this document

through the commonpaths.xml file that has to be present in the root directory of every annotation project

(or set of projects). In the<views> Section of this file, there is one reference to every defined style sheet

file. Since references to style sheets are defined in the commonpaths.xml file (and not in each .mmax

file individually), adding one reference to this file is sufficient to make a new style sheet accessible for all

.mmax files in the annotation project. The first style sheet in the<views> Section is thedefaultstyle sheet

that is always loaded when a .mmax file is loaded. After that, the available style sheets can be found by

selecting in the ’Markable level control panel’ the menu ’Settings’ and then the menu item ’Style Sheet’.

Note: This will probably change in a later version, since the ’Markable level control panel’ is likely to be

abandoned. If more than one style sheet is available, the display can be changed by selecting a different

one. The style sheet currently in use can be reapplied (e.g. after it was modified) by selecting in the main

window the ’Display’ menu and then the ’Reapply current style sheet’ menu item. Note that this means

that style sheets can be modified and tested interactively without the need to reload the entire .mmax file.

The tool and the style sheet engine is also sufficiently robust to handle even serious style sheet errors: If

a style sheet crashes after modification and reapplication, simpy undo the last change, save the style sheet

again, and again reapply it. In most cases, the tool will recover from the style sheet crash without need to

restart.

The fact that MMAX2 does support multiple levels of annotation (as opposed to the first version which

supported only one such level) means that the once obligatory<sentences> or <turns> base data files

can be abandoned in favour of an additional markable level. The fact that one of both files was required

as part of the base data was a nuisance in earlier versions of MMAX, since sentence and particularly turn

segmentation was simply not always available a priori, i.e. before starting the annotation. A common work-

around was to use a dummy<sentences> or <turns> file which contained only one entry, spanning the

entire discourse.

From this version on, both files are optional, meaning that both the<sentences> and the<turns> entry

in a .mmax file can remain empty. Instead, an additional markable level can be defined, which has the

advantage that sentence or turn segmentation can be done using the tool, i.e. as part of the annotation

proper, rather than prior to the annotation. Already existing<sentences> or <turns> files can easily be

converted into markable filesby

• renaming the elements (incl. their ID namespaces) fromsentence or turn to markable ,

• replacing the root element with a<markables> element, including a proper namespace (i.e.sen-

tencesor turns),

• adding a markables doctype declaration, including a SYSTEM reference to the file markables.dtd,

and

• adding a reference to the new markable layer to the .mmax file.

This document uses for illustration purposes the sample data supplied with this distribution. This data

follows the data format that is now favoured, and the style sheets described in the following are slightly

3

incompatible with earlier versions.

4

3 Simple Style Sheets

3.1 A Basic Style Sheet Template

The most basic MMAX2 style sheet is one that simply outputs the base data, i.e. the text that is represented

in the <word> elements in the base data words.xml file. More complex style sheets (described later)

include ones that add line breaks, markable handles or markable attribute values at certain positions. Note,

however, that the style sheet is NOT responsible for specifying e.g. the font color for markables: This is

the domain of markable customizations. As a rule of thumb, style sheets are responsible for the display

layout, i.e. what appears where, while markable customizations are responsible forhow things appear, i.e.

using which font attributes.1

Each MMAX2 style sheet must haveat leastthe following elements:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:mmax="org.eml.MMAX2.discourse.MMAX2DiscourseLoader"

version="1.0">

<xsl:output method="text" indent="no" omit-xml-declaration="yes"/>

<xsl:strip-space elements=" * "/>

<xsl:template match="words">

<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

The<xsl:stylesheet> tag does not only define the standard xsl name space (first argument), but also the

mmax name space (second argument), which is associated with the name of a MMAX2 Java class. This

name space is required to enable the style sheet to execute the Java methods that MMAX2 needs when

building the display. The<xsl:output> tag mainly specifies that the style sheet should produce plain

text without any indentations or markup. The<xsl:strip-space> tag makes sure that white space and line

breaks from the base data and annotation level xml files do not show up in the display. Finally, there is

one<xsl:template> element to match the root node of the document submitted to the style sheet (i.e. the

parsed base data words.xml file). This template is matched only once, and calls<xsl:apply-templates/>

for each of its childern, i.e. for every individual word in the base data.2

The above style sheet will not yet produce any output (and probably even throw some non-critical errors).

In order to actually let text appear in the display, an<xsl:template> element for elements of type<word>

has to be added. The minimal form that this template can take is the following:

<xsl:template match="word">

<xsl:value-of select="mmax:registerDiscourseElement(@id)"/>

<xsl:value-of select="mmax:setDiscourseElementStart()"/>

<xsl:apply-templates/>

<xsl:value-of select="mmax:setDiscourseElementEnd()"/>

<xsl:text> </xsl:text>

</xsl:template>

1As will become clear later, this division of labour is not really strict, because the font attributes forliteral text inserted into the

display are specified by the style sheet inserting it.
2For those interested, this is the major point of difference between this and earlier versions of MMAX: Earlier ver-

sions, which still required a<sentences> or <turns> file would match this elements, calling the now deprecated method

mmax:getDiscourseElementsAsNodes(String ID) for each sentence or turn.

5

The first line in the<word> template must be a call to mmax:registerDiscourseElement(String ID). The

above template demonstrates the easiest way to realize this call, i.e. in theselect part of a<xsl:value-of>

instruction. Although this instruction is normally used to insert text into the style sheet output stream (i.e.

in the result of the transformation), it can also be used like this if the function that is called simply does not

return anything. The next three lines are responsible for adding the actual word string to the display. The

middle line simply calls<xsl:apply-templates/> for the current<word> element’s textual child, causing

the text string of this child to be inserted into the display. This call has to be immediately surrounded by

calls to mmax:setDiscourseElementStart() and mmax:setDiscourseElementEnd(), respectively. These calls

create an association between the current element’s ID and the portion of the display that contains the string

of this element’s textual child. The last line in the template inserts a space separator directly after the word

just added. When applied to the sample HTC data, the above minimal MMAX2 style sheet produces the

display shown in Figure 1. The source code for the above style sheet can be found in file htc1.xsl the

Figure 1: MMAX2 display with minimal output

Styles folder of the HTC sample data. Note that for the above screen shot (and for all following ones,

unless otherwise noted), markable customizations have been switched off.3

3Markable customizations can be deactivated for a level by unchecking the box at the right of the Validate button in the ’Markable

level control panel’.

6

4 More Complex Style Sheets

Most displays (except for the most simple ones) will have to incorporate somehow information about the

actual annotation that is available for a given set of base data elements. In order to do that, they have to

access markables, since markables are the carriers of annotation information.

4.1 Accessing Markables

MMAX2 is a multi-level annotation tool. Therefore, several levels of annotation do normally exist, each

of which resides in a separate xml file. In order for the style sheet to be able to distinguish markables

from different levels, each level has to be associated with an xsl name space, which is normally the

name of the annotation level as defined in the .mmax file. A markable level is associated with a name

space by adding a name space declaration to the root<markables> element in the markable xml file.

In the HTC sample data, e.g., the markables from thecoref level have the root element<markables

xmlns=”www.eml.org/NameSpaces/coref”>, the markables from thesentenceslevel have the root element

<markables xmlns=”www.eml.org/NameSpaces/sentences”>.

The name space of each markable level to be accessed in a style sheet has to be declared in the style sheet

header. This is done by adding linesinto the<xsl:stylesheet> element, like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:mmax="org.eml.MMAX2.discourse.MMAX2DiscourseLoader"

xmlns:coref="www.eml.org/NameSpaces/coref"

xmlns:sentences="www.eml.org/NameSpaces/sentences"

version="1.0">

In a style sheet like this, markable elements from different levels can be distinguished by prepending their

associated name space to the generic ’markable’ element name: coref:markable vs. sentences:markable.

4.2 Adding Simple Markable Handles

One of the most useful ways to incorporate markables into the display is by addingmarkable handles.

These markable handles surround a markable and allow its immediate selection, which is particularly useful

in cases of multiple embedding. In addition, they also nicely visualize the extent of a markable. By default,

they are mouse-sensitive, i.e. when the mouse pointer rests over a markable handle, the matching handle

will be highlighted.4

Adding handles for markables from a particular level requires two things: The<xsl:template> for <word>

elements has to be slightly modified, and templates for actually adding the handles have to be written.

The first step consists of adding two instructions, like in the following:

<xsl:template match="word">

<xsl:value-of select="mmax:registerDiscourseElement(@id)"/>

<xsl:apply-templates select="mmax:getStartedMarkables(@id)" mode="opening"/>

<xsl:value-of select="mmax:setDiscourseElementStart()"/>

<xsl:apply-templates/>

<xsl:value-of select="mmax:setDiscourseElementEnd()"/>

4In fact, pairs of handles willalwaysbe highlighted if the mouse pointer rests over a position that isuniquely associatedwith a

markable. This is true for all markable handles, but also if only one markable level with only one markable exists at a given position.

7

<xsl:apply-templates select="mmax:getEndedMarkables(@id)" mode="closing"/>

<xsl:text> </xsl:text>

</xsl:template>

As the names suggest, each of the inserted instructions returns a node set of markables that start or end

at the respective position. Note that the calls have to be added exactly as shown above, i.e. immediately

before mmax:setDiscourseElementStart() and after mmax:setDiscourseElementEnd(). Also note themode

argument, which is important to select the correct template to match the started or ended markable nodes

(cf. below).

What remains to be done is adding<xsl:template> elements to actually match the markables returned by

the calls to mmax:getStartedMarkables(String ID) and mmax:getEndedMarkables(String ID).

The domain of a template, i.e. the set of elements to which it is to apply, is determined by the template’s

match argument. For markables from thecoref level, this is coref:markables. In order to further distin-

guish between templates for starting and ending markables, the template’smode argument is used, which

is set toopening or closing , just like in the corresponding calls in the<xsl:template> for <word>

elements, cf. above. Thus, the most simple markable handles are created with the following pair of tem-

plates:

<xsl:template match="coref:markable" mode="opening">

<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level, @id, ’[’)"/>

</xsl:template>

<xsl:template match="coref:markable" mode="closing">

<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, ’]’)"/>

</xsl:template>

This will produce a display with simple markable handles as shown in Figure 2.

Figure 2: MMAX2 display with simple markable handles

The source code for the above style sheet can be found in file htc2.xsl theStyles folder of the HTC

sample data. Note that opening and closing handles are automatically inserted in the correct embedding

order, i.e. the handle that is opened first is closed last.

8

The actual string that is used for the handle can be specified in the last parameter of the mmax:addXMarkableHandle(...)

call. Note that using a string with more than one character is also possible, creating a correspondingly

longer handle. However, while markable handles are mouse-sensitive over their entire length (cf. above),

only the leftmost and rightmost characters of left and right handles, respectively, will be highlighted when

the mouse pointer rests over a handle.5 Note also that, in contrast to e.g. the call to mmax:registerDiscourseElement(String

ID), the calls for adding markable handles actually do return a string, which is then inserted into the display.

Since markable handles constituteliteral text (as opposed to text from the base data), their font attributes

have to be set by the style sheet inserting them. Font attributes for literal text (not just markable handles)

can be set using the methods described in Section 5.3. Generally, text to which attributes are to be applied

must be surrounded by a pair of calls to the respective start / end methods. Thus, in order to let the markable

handles appear in bold font, the following modifications to the above templates are necessary:

<xsl:template match="coref:markable" mode="opening">

<xsl:value-of select="mmax:startBold()"/>

<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level, @id, ’[’)"/>

<xsl:value-of select="mmax:endBold()"/>

</xsl:template>

<xsl:template match="coref:markable" mode="closing">

<xsl:value-of select="mmax:startBold()"/>

<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, ’]’)"/>

<xsl:value-of select="mmax:endBold()"/>

</xsl:template>

This will produce the display with bold markable handles shown in Figure 3).

Figure 3: MMAX2 display with simple markable handles in bold font

The source code for the above style sheet can be found in file htc3.xsl theStyles folder of the HTC

sample data. By default, markable handles will always appear in black. Different colours can be defined

by means of markable customizations, by defining an appropriate pattern (e.g.pattern=" {all }") and

5This holds for the simple versions of the addXMarkableHandle(...) methods only. Section 4.4 describes methods that allow to

override this behaviour.

9

using the formathandles= colour in the style string (e.g.style="handles=yellow"). Note that

this mechanism is flexible and powerful enough to also have attribute-dependent markable handle colours.

Note also that only handlecolourscan be set this way.

4.3 Structuring the Display

A second major use of incorporating markables into the display is by using them to put the display text in a

particular structure. Structuring can be as simple as adding a line break after every sentence, or visualizing

the turn and utterance structure of a spoken dialogue. Adding line breaks is simply done by writing a

template that adds a line break after eachsentencemarkable. This can be done like this:

<xsl:template match="sentence:markable" mode="closing">

<xsl:text>

</xsl:text>

</xsl:template>

This will produce the output in Figure 4. The source code for the above style sheet can be found in file

Figure 4: MMAX2 display with sentences separated by line breaks

htc 4.xsl theStyles folder of the HTC sample data.

A more refined layout with the first line (i.e. the head line) set off with an extra empty line can also be

created by using the fact that the first markable in the sample file (and in all other files from the HTC, for

that matter) has a particular id.

<xsl:template match="sentence:markable" mode="closing">

<xsl:choose>

<xsl:when test="@id=’markable_1’">

<xsl:text> <!-- Add extra line break after sentence markable with id markable_1 -->

</xsl:text>

</xsl:when>

<xsl:otherwise>

10

<xsl:text> <!-- Add normal line break only after all other sentence markables -->

</xsl:text>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

This is also a good example for how standard XSL control structures can be used for creating MMAX2

displays. The output of the above template looks as in Figure 5: The source code for the above style sheet

Figure 5: MMAX2 display with sentences separated by line breaks and head line set off

can be found in file htc5.xsl theStyles folder of the HTC sample data.

As a slightly more complex structuring example, consider the Trainline data. Each Trainline dialogue

contains markables representing turn and utterance segments. The information on these levels should be

used to render the display of the dialogue as readable as possible. In addition, theturn level contains

information about speaker and number of turn, which one would also like to see on the display, although it

is not part of the actual data.

To start with, the following templates (in combination with the header and<word> template described

above) demonstrate how to add this type of information to the display:

<xsl:template match="turns:markable" mode="opening">

<xsl:text>

</xsl:text>

<xsl:value-of select="mmax:startBold()"/>

<xsl:value-of select="@speaker"/>

<xsl:text>.</xsl:text>

<xsl:value-of select="@number"/>

<xsl:text>: </xsl:text>

<xsl:value-of select="mmax:endBold()"/>

<xsl:text> </xsl:text> <!-- This is a tab character! -->

<xsl:value-of select="mmax:startBold()"/>

<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level, @id, ’[’)"/>

11

<xsl:value-of select="mmax:endBold()"/>

</xsl:template>

<xsl:template match="turns:markable" mode="closing">

<xsl:value-of select="mmax:startBold()"/>

<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, ’]’)"/>

<xsl:value-of select="mmax:endBold()"/>

<xsl:text>

</xsl:text>

</xsl:template>

This will produce the type of display as in Figure 6. The source code for this style sheet can be found in file

Figure 6: MMAX2 display with one turn per line

trainline 1.xsl theStyles folder of the Trainline sample data. There are two interesting things to note in

this style sheet. First, note how thespeakerandnumberattributes in the turn level markables are accessed

by using the standard XSL notation@speaker and@number. Second, a tab character is used to separate

the turn number from the actual turn. This way, the proper turn alignment is produced.

It is important to understand the status of the literal text (i.e. the speaker and number strings) added to the

display: Although this text consists of informationtakenfrom markables, it is part of the display only, and

cannot be annotated. Thus, the text cannot be highlighted by left-clicking and dragging the mouse (just

like markable handles), so that consequently it cannot be part of markables.

The obvious problem with the above display layout is that utterance segmentation is not properly visible.

Adding a markable handle for every utterance within a turn would be simple, but would still render every

turn in one long line. It would be preferable to have a display that gives each utterance in a separate line,

grouping together utterances from the same turn. In order to that, one simply has to add a line break before

every utterance but the turn-initial one. Adding the following templates for handling utterance markables

does just that.

<xsl:template match="utterances:markable" mode="opening">

12

<xsl:if test="mmax:startsMarkableFromLevel(@id, @mmax_level, ’turns’)=false">

<xsl:text>

</xsl:text> <!-- This is a tab character! -->

</xsl:if>

<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level, @id, ’[’)"/>

</xsl:template>

<xsl:template match="utterances:markable" mode="closing">

<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, ’]’)"/>

</xsl:template>

This will produce the type of display as in Figure 7. The source code for this style sheet can be found in file

Figure 7: MMAX2 display with one utterance per line, grouped by turns

trainline 2.xsl theStyles folder of the Trainline sample data. The most interesting part in the above style

sheet is the call to mmax:startsMarkableFromLevel(String ID, String ownLevel, String targetLevel). This

is a boolean function that returnstrue if there is a markable on leveltargetLevelthat the current markable

starts, i.e. whose first word is identical to the current markable’s first word, andfalse otherwise. In the

latter case, a line break plus a tab is added to the display. This method call (and the call to the corresponding

mmax:finishesMarkableFromLevel(String ID, String ownLevel, String targetLevel)) can be used wherever

a standard XSL boolean-returning function can be used. Note that neither function does carehow many

markables from leveltargetLevelthe current markable starts or finishes; rather, it returnstrue if there is

at least one,false otherwise.

Using markable handles for markables from different markable levels simultaneously (like in the above

example) makes it necessary to pay some attention to the markable levelordering. For each annotated

document, this ordering is initially defined by the ordering of the<level> elements in the associated

.mmax file. By default, the ordering is such that levels of markables that arelarger units (e.g. turns) are

below levels containing markables that aresmallerunits (e.g. utterances). It is only with this setting that

the above style sheet will produce the desired output. The ordering of the markable levels can be changed

13

temporarily by moving them up or down in the ’Markable level control panel’. In order for changes to the

markable level ordering to take effect, the current style sheet has to be reapplied. The style sheet currently

in use can be reapplied by selecting in the main window the ’Display’ menu and then the ’Reapply current

style sheet’ menu item.

4.4 Adding Textual Markable Handles

As already mentioned in Section 4.2, markable handles need not be restricted to single characters. They

do not even have to consist ofliteral text only. Instead, thevalues of markable attributes can be used

as handles. This has the great advantage that attributes can very easily be inspected without the need to

select each markable. Only if some error is detected, the markable has to be selected in order to correct

the error. Aftzer the markable modification in the MMAX2 attribute window has been applied, a simple

reapplication of the current style sheet suffices to also display the corrected value in the display.

Depending on how fancy the character attributes for the handles are, textual handles can be created very

easily.

4.4.1 Plain

In the following example, the template for creating theclosinghandles for utterance markables has been

modified to include the value of the markable’stypeattribute.

<xsl:template match="utterances:markable" mode="closing">

<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level,

@id,

concat(’] ’,@type),

1)"/>

</xsl:template>

The display produced by this template (in combination with the above ones) looks as in Figure 8. The

source code for this style sheet can be found in file trainline3.xsl theStyles folder of the Trainline

sample data. The right handle at each utterance now contains a matching closing bracket, followed by two

space characters, and then the value of the utterance’stypeattribute. The entire handle string is mouse-

sensitive. What is important here is that (unlike in the standard behaviour for right markable handles, cf.

Section 4.2) what is highlighted is not the right-most character, but (in this case) the first one. This is

controlled by the last parameter in the call to mmax:addRightMarkableHandle(String ownLevel, String

ownID, String handle, int highlight). Thehighlight parameter can be used to specify the numerical

index within the handle string that is to be used for highlighting. Using a value of 1 tells MMAX2 to use

the leftmost (i.e. first) character in the handle string. If the right handle string started with e.g. one leading

space, followed by the closing bracket,highlight would have to be set to 2, and so on.

Alternatively, theleft markable handle can also be enhanced with attribute values. Substituting the above

utterance templates with the following two will display thetype value at thebeginningof each utterance.

<xsl:template match="utterances:markable" mode="opening">

<xsl:if test="mmax:startsMarkableFromLevel(@id, @mmax_level, ’turns’)=false">

<xsl:text>

</xsl:text> <!-- This is a tab character! -->

</xsl:if>

14

Figure 8: MMAX2 display with one utterance per line, grouped by turns, and turn-type as right handle

<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level,

@id,

concat(@type,’ [’),

string-length(@type)+2)"/>

</xsl:template>

<xsl:template match="utterances:markable" mode="closing">

<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, ’]’)"/>

</xsl:template>

The display will then look as in Figure 9. The source code for this style sheet can be found in file train-

line 4.xsl theStyles folder of the Trainline sample data. Note how thehighlight parameter is set

dynamically for each utterance depending on the length of the actual type string.

4.4.2 More Fancy

The markable handles described so far have been not so fancy in that they used only very simple font

attributes. More fancy handles can be created by using several font attributes within one handle, resp. by

applying certain attributes topart of a handle only. The following pair of utterance templates will create

handles where the brackets appear in normal-sized bold font, but the utterance’stypeattribute value are

rendered as subscript.

<xsl:template match="utterances:markable" mode="opening">

<xsl:if test="mmax:startsMarkableFromLevel(@id, @mmax_level, ’turns’)=false">

<xsl:text>

</xsl:text> <!-- This is a tab character! -->

</xsl:if>

<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level,@id,’[’)"/>

15

Figure 9: MMAX2 display with one utterance per line, grouped by turns, and turn-type as left handle

</xsl:template>

<xsl:template match="utterances:markable" mode="closing">

<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level,

@id,

string-length(@type)+1,

1)"/>

<xsl:text>]</xsl:text>

<xsl:value-of select="mmax:startSubscript()"/>

<xsl:value-of select="@type"/>

</xsl:value-of select="mmax:EndSubscript()">

</xsl:template>

The display will then look as in Figure 10. The source code for this style sheet can be found in file train-

line 5.xsl theStyles folder of the Trainline sample data. The main difference is in mmax:addRightMarkableHandle(String

ownLevel, String ownID, int handleLength, int highlight). Instead of supplying the handle string itself, this

method receives only thesizeof the handle to be added. The handle itself is added as literal text, which

allows to use any type of font attributes supported by MMAX2. Note that it is important that the text

actually added is exactly as long as was specified in theextentparameter.

4.5 More Flexible Style Sheets (updated for version 1.0 beta 4)

From version 1.0 beta 4 on, there is a convenient way to define different views of a given set of base data

files and annotations without having to create an extra style sheet for each. This version introduces so-

calleduser switches. User switches are user-defined symbols (i.e. strings) that can be associated with anon

or off state. User switches are defined in thecommonpaths.xml file. The following code extract (taken

from the commonpaths.xml file of the HTC sample data) defines a user switch with the namecoref handle,

16

Figure 10: MMAX2 display with one utterance per line, grouped by turns, and turn-type as right handle,

in subscript font

and sets it initially toon.

...

<user_switches>

<user_switch name="coref_handle" default="on"/>

</user_switches>

...

For each user switch defined, a button in the ’User switches’ sub menu in the ’Display’ menu is created,

which reflects the current state of the switch. The point is that the execution of the style sheet can be made

to consider the current state of user switches. Thus, when using the style sheet htc2.xsl on the HTC data,

markable handles for thecoref level will only be added if thecoref handleswitch is currently set toon.

See Section 5.2 for information about how to use user switches in your own style sheets.

17

5 Function Reference (updated for version 1.0 beta 4)

This Section describes the MMAX2 extension functions that can be called from within a MMAX2 style

sheet. The extension functions are availablein addition to the standard XSL functions. For reasons of

clarity, themmax: prefix is omitted in the following. When using the functions, the mmax name space

must be supplied. Also, the mmax name space has to be declared as described in Section 3.

5.1 System Functions

System functions are those that are needed for MMAX2 to be able to create a correct display. Their use is

obligatory, and they must appear at certain pre-defined positions in a style sheet (cf. Section 3.1). System

functions are best called in theselect parameter of<xsl:value-of/> functions: This is the easiest way,

and it is feasible because if the function called is void (i.e. does not return anything), adding the function’s

return value to the output (which is what<xsl:value-of/> does) simply has no effect.

• registerDiscourseElement(String ownID) :

This function must be the first to be called in the<xsl:template> for word elements. It is used for

tool-internal purposes.

• setDiscourseElementStart() :

This function must be called immediately before<xsl:apply-templates/> in the<xsl:template> for

word elements. It is needed for creating the association between discourse elements (i.e. words) and

the display positions at which they appear.

• setDiscourseElementEnd() :

This function must be called immediately after<xsl:apply-templates/> in the<xsl:template> for

word elements. It is needed for creating the association between discourse elements (i.e. words) and

the display positions at which they appear.

5.2 Control Functions (updated for version 1.0 beta 4)

Control functions are those functions that can be used to influence the style sheet control flow. They all

return boolean values (i.e. eithertrue or false). They can be used wherever boolean-returning standard

XSL functions can be used, in particular in thetest attribute of<xsl:if> and<xsl:when> functions.

Right now, there are only two such functions in MMAX2.

• startsMarkableFromLevel(String ownID, String ownLevel, String targetLevel) :

This method returnstrue if there is at least one markable on leveltargetLevelthat the markable

with ID ownID on levelownLevelstarts,false otherwise. One markable is said to start another

markable if both markables have the same first word.

• finishesMarkableFromLevel(String ownID, String ownLevel, String targetLevel) :

This method returnstrue if there is at least one markable on leveltargetLevelthat the markable

with ID ownIDon levelownLevelfinishes,false otherwise. One markable is said to finish another

markable if both markables have the same last word.

• isOn(String switchName) :

This function has beenadded in version 1.0 beta 4. It can be used to make the behaviour of a

style sheet dependent on the settings of so-calleduser switcheswhich can be defined in the file

18

commonpaths.xml , and modified by the user via the MMAX2 GUI. This method returnstrue

if the the user switch of the nameswitchNameis currently switched toon, false otherwise. Using

this function to control style sheet control flow can reduce the number of different style sheets that

one has to write: Instead of writing e.g. three style sheets, each of which displays handles for one

level, one can now simply write one style sheet in which the display of handles is controlled by a

separate user switch for every level.

5.3 Functions for Setting Font Attributes

The following functions are available for setting attributes forliteral text. Literal text is text that is added to

the display by either<xsl:text></xsl:text> or <xsl:value-of/>, incl. markable handles. These functions

should also be called in theselect parameter of<xsl:value-of/> functions, cf. Section 5.1 above.

• startBold(), endBold()

• startItalic(), endItalic()

• startUnderline(), endUnderline()

• startStrikeThrough(), endStrikeThrough()

• startSubscript(), endSubscript()

• startSuperscript(), endSuperscript()

The names of the above functions are self-explanatory. Attributes can also be combined: e.g. text can be

bold and italic at the same time. However, the font attributes underline and strikethrough resp. subscript

and superscript are mutually exclusive!

5.4 Markable-Related Functions

5.4.1 Markable-Returning Functions

As with system functions (cf. Section 5.1 above), the positions at which markable-returning functions may

appear are strictly defined. Unlike system functions, however, they are not obligatory, meaning that they

can be left out if no access to markables from any levels is required (as in the simple display described

in Section 3.1). If markables are to be accessed from within the style sheet (e.g. for adding markable

handles), the following two functions have to be called exactly at the positions specified below. Since these

functions return markables (in the form of NodeSets), they must be called in theselect parameter of

an<xsl:apply-templates/> call, with themode parameter set to the correct value. This value is necessary

so that the markables retrieved can be matched by the respective<xsl:template> elements. Note: Calling

markable-returning functions alone will not have any effect on the display! They make only sense in

combination with<xsl:template> elements that actually process the returned markables (cf. Section 5.4.2

below).

• getStartedMarkables(String ID) :

If used, this function must be called directly after registerDiscourseElement(String ID) and directly

before setDiscourseElementStart(). Themode value must be set toopening. This method returns

a NodeSet of all markables that are started at the markable with the supplied ID. The markables

19

returned are ininversemarkable level order: markables from lower levels are returned before mark-

ables from higher levels. If two markables from the same level start at the same position, the

longer one is returned before the shorter one. This ordering is used to ensure that the markables

are processed in an order allowing for correct embedding of markable handles.

• getEndedMarkables(String ID) :

If used, this function must be called directly after setDiscourseElementEnd(). Themode value must

be set toclosing. This method returns a NodeSet of all markables that are ended at the markable with

the supplied ID. The markables returned are in markable level order: markables from lower levels

are returned after markables from higher levels. If two markables from the same level start at the

same position, the longer one is returned after the shorter one. This ordering is used to ensure that

the markables are processed in an order allowing for correct embedding of markable handles.

5.4.2 Functions for Adding Markable Handles

There are several functions for adding left and right markable handles. The all have in common that they

have to be called from within<xsl:template> elements that match markable elements. Some of these

functions actually return a value (i.e. a string representing the handle to be added), some don’t. The

preferred way to call them is in theselect parameter of<xsl:value-of/> functions.

• – addLeftMarkableHandle(String level, String id, String handle) :

This function has to be called in a template withmode="opening" . It inserts the (potentially

multi-character) stringhandleas a markable handle for the markable with the IDid on level

level. The left-most character inhandleis used for highlighting matching handles. The handle

is inserted by the function itself (i.e. as the return value).

– addRightMarkableHandle(String level, String id, String handle) :

This function has to be called in a template withmode="closing" . It inserts the (potentially

multi-character) stringhandleas a markable handle for the markable with the IDid on level

level. The right-most character inhandleis used for highlighting matching handles. The handle

is inserted by the function itself (i.e. as the return value).

• – addLeftMarkableHandle(String level, String id, String handle, int

highlight) :

This function has to be called in a template withmode="opening" . It inserts the (potentially

multi-character) stringhandleas a markable handle for the markable with the IDid on level

level. The character at positionhighlight (1-based) inhandleis used for highlighting matching

handles. The handle is inserted by the function itself (i.e. as the return value).

– addRightMarkableHandle(String level, String id, String handle, int

highlight) :

This function has to be called in a template withmode="closing" . It inserts the (potentially

multi-character) stringhandleas a markable handle for the markable with the IDid on level

level. The character at positionhighlight (1-based) inhandleis used for highlighting matching

handles. The handle is inserted by the function itself (i.e. as the return value).

• – addLeftMarkableHandle(String level, String id, int extent) :

This function has to be called in a template withmode="opening" . It inserts a (potentially

multi-character) handle of lengthextentas a markable handle for the markable with the IDid

20

on level level. The left-most character is used for highlighting matching handles. The handle

is not inserted by the function itself: It has to be added explicitly by means of<xsl:text> or

<xsl:value-of/> after the function call.

– addRightMarkableHandle(String level, String id, int extent) :

This function has to be called in a template withmode="closing" . It inserts a (potentially

multi-character) handle of lengthextentas a markable handle for the markable with the IDid

on levellevel. The right-most character is used for highlighting matching handles. The handle

is not inserted by the function itself: It has to be added explicitly by means of<xsl:text> or

<xsl:value-of/> after the function call.

• – addLeftMarkableHandle(String level, String id, int extent, int highlight) :

This function has to be called in a template withmode="opening" . It inserts a (potentially

multi-character) handle of lengthextentas a markable handle for the markable with the IDid

on levellevel. The character at positionhighlight (1-based) is used for highlighting matching

handles. The handle isnot inserted by the function itself: It has to be added explicitly by means

of <xsl:text> or <xsl:value-of/> after the function call.

– addRightMarkableHandle(String level, String id, int extent, int

highlight) :

This function has to be called in a template withmode="closing" . It inserts a (potentially

multi-character) handle of lengthextentas a markable handle for the markable with the IDid

on levellevel. The character at positionhighlight (1-based) is used for highlighting matching

handles. The handle isnot inserted by the function itself: It has to be added explicitly by means

of <xsl:text> or <xsl:value-of/> after the function call.

5.4.3 Other Functions

This section lists miscellaneous functions that do not fit into any other section.

• addHotSpot(String text, String methodCall) :

This function inserts into the display a clickable area (a so-calledHot Spot) containing the texttext.

Clicking the hot spot in the display will cause the method specified in themethodCallto be executed.

Right now, only one method is defined to be used in hot spots.6

– playwavsound:

This method call can be used to create hot spots for playing .wav files associated with the

annotation. The method needs the following parameters:

∗ file name: The name of the file to be played.

∗ start: The position (in seconds) in the file at which to start playback.

∗ end: The position (in seconds) in the file at which to end playback.

endmust be larger thanstart. Right now, the method can handle 16 kHz .wav files only.

methodCallmust be a string composed of the above parameters (separated by space) in the order

shown. E.g. to add a hot spot to play the portion of the file recording.wav from 3.763 to 6.73, the

string must look as follows: ’playwavsound recording.wav 3.763 6.73’.

6Other functions, including ones for more flexible .wav and .mp3 playback, will be added in later versions.

21

