
MMAX2 Annotation Schemes (draft)

c© Christoph M̈uller

EML Research gGmbH

http://mmax.eml-research.de

9th February 2005

Contents

1 About this Document 1

2 Attributes and Relations 3

3 Simple Schemes 5

4 Complex Schemes 6
4.1 Overview . 6

4.2 Markable Creation . 7

4.3 Markable Selection . 7

4.4 Markable Attribute Modification . 8

4.4.1 NOMINAL Attributes . 8

4.4.2 MARKABLE POINTER Relations . 8

1 About this Document

This document describes MMAX2 Annotation Schemes and how these can be used to define attributes,

values and relations of markables. Within the MMAX2 framework, annotation schemes are of crucial

importance since they specify the ’vocabulary’ available for describing phenomena for manual annotation.

Note: This document contains information required for defining and customizing annotation schemes by

hand, i.e. by manually modifying the XML files in which they are specified. While this is easy and fea-

sible for shorter and simpler schemes, it can get difficult and awkward for longer ones, especially when

more complex hierarchical relations are used. Therefore, a graphical user interface for annotation scheme

definition will be added in some later version.

1

Note: The annotation scheme mechanisms have been overhauled in version 1.0 beta 4. Annotation scheme

definition ist now simpler and more straightforward, especially ifattribute dependencies(cf. Section 4.1)

are used. As a result, some annotation schemes defined for earlier versions might behave slightly differ-

ently. If you experience this and have problems adapting your schemes yourself, please do not hesitate to

contact us at mmax@eml-research.de, and we will be happy to assist you.

2

2 Attributes and Relations

Each annotation scheme is basically about attributes and relations. It is in terms of these two categories that

an annotation scheme is specified. Each attribute and each relation has to be of a certain type. Currently,

MMAX2 supports the following attribute types:

• FREETEXT:

An attribute of this type can accept as its value any string.

• NOMINAL LIST:

An attribute of this type can accept as its value one of a closed set of values defined for it in the

annotation scheme. The term LIST refers to the fact that attributes of this type are rendered as drop-

down lists in the MMAX2 Attribute Window. In all other respects, attributes of this type are identical

to attributes of the type described next.

• NOMINAL BUTTON:

An attribute of this type can accept as its value one of a closed set of values defined for it in the

annotation scheme. The term BUTTON refers to the fact that attributes of this type are rendered as a

sequence of radio buttons in the MMAX2 Attribute Window. In all other respects, attributes of this

type are identical to attributes of the type described above.

The following is a list of all currently supported relation types:

• MARKABLE SET:

A relation of this type can accept as its value an ID identifying a set of one or more markables which

have the same ID in the same relation. In other words, a relation of this type can be used togroup

two or more markables together, forming a set. The value of this relation is never set explicitly by

the user, but only by means of adding and removing markables from sets in the MMAX2 GUI.

• MARKABLE POINTER:

A relation of this type can accept as its value one or more IDs of other markables. Thus, it can

be used to model apointing relation from one markable to one or more other markables. As with

MARKABLE SET relation, the value of this relation is never set explicitly by the user, but only by

means of adding and removing pointers to markables in the MMAX2 GUI.

Both attributes and relations are defined in a so-called annotation scheme file, which contains XML ele-

ments specifying attributes, their type, and, if applicable, their possible values. This is done in a sequence

of <attribute > and embedded<value > tags. The XML tags look slightly different, depending on

whether they define an attribute or a relation. Schematically, the XML tags look as follows.

• FREETEXT attributes:

<attribute id=ATT ID name=ATT NAME type="freetext" text=ATT DESC>

<value id=ATT VAL ID name=ATT NAME/ >

</attribute >

The value of thename attribute is used both for display in the attribute window, and as the name of

the XML tag on a markable. Text found in the optionaltext attribute is displayed in the attribute

window as a tool tip when the mouse rests over the corresponding name label. FREETEXT attributes

must have exactly one<value/ > tag, and this tag’sname attribute must be identical to thename

value of the enclosing<attribute > tag.

3

• NOMINAL attributes:

<attribute id=ATT ID name=ATT NAME type="nominal button|nominal list"

text=ATT DESC>

<value id=ATT VAL ID name=VAL NAME text=VAL DESC next=DEP ATTS/ >

...

</attribute >

The value of thename attribute is used both for display in the attribute window, and as the name of

the XML tag on a markable. Text found in the optionaltext attribute on either the<attribute >

or the<value > tag is displayed in the attribute window as a tool tip when the mouse rests over

the corresponding name label. NOMINAL attributes must have one<value/ > tag for every value

defined for them. Each value can have an optionalnext attribute which can contain a (list of) IDs

of <attribute > tagsdependenton them. See Section 4 for details. Note that the difference

between NOMINALLIST and NOMINAL BUTTON only relates to the way they are displayed in

the attribute window. A NOMINALLIST attribute can be turned into a NOMINALBUTTON one,

and vice versa, by simply changing the value of thetype attribute. It can be useful, e.g. to use the

BUTTON type for annotation,1 since it allows for quicker value selection, and change it to LIST for

browsing the completed annotation, since this display form takes less space.

• MARKABLE SET:

<attribute id=ATT ID name=REL NAME type="markable set" text=REL DESC

style="straight|lcurve|rcurve|xcurve"

color=LINE COLOR

width=LINE WIDTH

add to markableset text=ITEM TEXT

remove from markableset text=ITEM TEXT

adopt into markableset text=ITEM TEXT

merge into markableset text=ITEM TEXT>

<value id=ATT VAL ID name=REL NAME/>

</attribute >

The value of thename attribute is used both for display in the attribute window, and as the name of

the XML tag on a markable. Text found in the optionaltext attribute is displayed in the attribute

window as a tool tip when the mouse rests over the corresponding name label. The optionalstyle

attribute (default value = straight) can be used to control the form of the line used to visualize a

markable set if one of its members is selected in the MMAX2 main window. The optionalcolor

attribute (default value = black) can specify the color of this line. Possible pre-defined values are:

black, blue, cyan, lightGray, gray, darkGray, green, magenta, orange, pink, red, white, yellow. Values

can also be specified as triples of RGB-values, either with decimal (three-place!) values prepended

with ’d:’ (d:rrrgggbbb) or with hexadecimal (two-place!) values prepended with ’x:’ (x:rrggbb).

The optionalwidth attribute (default value = 2) can be used to control the width of the line. Note

that XML requires that this attribute’s value also be enclosed in quotation marks, even though it is

a number! The optional* text attributes can be used to customize the appearance of the popup

menu used for manipulating markable sets in the MMAX2 main window. If left out, default values

will be used. MARKABLE SET attributes must have exactly one<value/ > tag, and this tag’s

name attribute must be identical to thename value of the enclosing<attribute > tag.

1Though only if the list of possible values is not too long!

4

• MARKABLE POINTER:

<attribute id=ATT ID name=REL NAME type="markable pointer" text=REL DESC

style="straight|lcurve|rcurve|xcurve"

color=LINE COLOR

width=LINE WIDTH

max size=MAX TARGETNUMBER

target domain=TARGET DOMAINS

point to markable text=ITEM TEXT

remove pointer to markable text=ITEM TEXT/ >

<value id=ATT VAL ID1 name="not set" next=DEP ATTS/ >

<value id=ATT VAL ID2 name="set" next=DEP ATTS/ >

</attribute >

The value of thename attribute is used both for display in the attribute window, and as the name

of the XML tag on a markable. Text found in the optionaltext attribute is displayed in the at-

tribute window as a tool tip when the mouse rests over the corresponding name label. The optional

style attribute (default value = straight) can be used to control the form of the line used to visu-

alize pointing relations to other markables if the source markable is selected in the MMAX2 main

window. The optionalcolor attribute (default value = black) can specify the color of this line. Pos-

sible pre-defined values are: black, blue, cyan, lightGray, gray, darkGray, green, magenta, orange,

pink, red, white, yellow. Values can also be specified as triples of RGB-values, either with decimal

(three-place!) values prepended with ’d:’ (d:rrrgggbbb) or with hexadecimal (two-place!) values

prepended with ’x:’ (x:rrggbb). The optionalwidth attribute (default value = 2) can be used to con-

trol the width of the line. The optionalmax size attribute (default value = infinity) can be used to

limit the maximum number of markables a source markable may point to via this relation. Note that

XML requires that the latter two attributes’ values also be enclosed in quotation marks, even though

they are numbers! Finally, the optionaltarget domain attribute (default value = all levels) can be

used to restrict to markables on which levels a markable may point via this relation. The value of this

attribute has to be specified as a comma-separated listwithout any space charactersin between.

The optional* text attributes can be used to customize the appearance of the popup menu used

for manipulating markable pointers in the MMAX2 main window. If left out, default values will be

used. MARKABLE POINTER attributes must have exactly two<value/ > tags with the name

valuesnot setandset, as shown above. Each of these can have an optionalnext attribute which can

contain a (list of) IDs of<attribute > tagsdependenton them. See Section 4 for details.

3 Simple Schemes

For some annotation tasks, rather simple annotation schemes can be sufficient. In the following, an an-

notation scheme is referred to assimpleif it does not employ attribute dependencies, i.e. if none of the

<value > tags defined in it make use of thenext attribute.

Every MMAX2 annotation scheme must contain the top level<annotationscheme > tag. In addition,

since the annotation scheme file is in XML format, it has to contain the<?xml version="1.0"? >

tag as its first content. Thus, aminimalannotation scheme with no attributes looks like this:

<?xml version="1.0"?>

<annotationscheme>

5

</annotationscheme>

Each markable level must have access to an annotation scheme file withat leastthe above content. For

levels which do not contain any attributes or relations, nothing more has to be added. However, if markables

on a particular level are supposed to have attributes and relations (the normal case), these have to be defined

in the annotation scheme. Otherwise, selecting a markable in the MMAX2 gui will trigger an error message

stating that anillegal attribute has been found on the markable.2 The same is true if theattribute itself is

defined in the annotation scheme, but thevaluefound on the particular markable is not.

Attributes are defined in the annotation scheme by simply adding the respective<attribute > elements

as described in Section 2. There are no constraints on the order in which<attribute > elements can

appear. In the attribute window, the attributes will be displayed in the order in which they appear in the

annotation scheme file.

Each attribute also has adefaultvalue. For FREETEXT attributes, the default value is the empty string.

For MARKABLE SET and MARKABLEPOINTER relations, the default value also is the empty string,

meaningno relation assigned. For NOMINAL attributes, thefirst value defined in the annotation scheme

will be used as the default value.Tip: It can be advisable sometimes to specify some special value (like

e.g.none) as the default value for a NOMINAL attribute, in order to signal that for a given markable the

value for this attribute has not yet been assigned by the annotator.

4 Complex Schemes

4.1 Overview

In contrast to simple schemes,complexschemes are those that employ dependencies between attributes.

Dependencies are specified by means of thenext attribute on<value/ > tags in the annotation scheme.

In a nut shell, one or more attributes are dependent on some other attribute A if they are available only if

A has a particular value, i.e. the value that has the dependent attribute(s) in itsnext attribute. It follows

from this that only those attributes with more than one<value/ > tag, i.e. all except FREETEXT and

MARKABLE SET attributes, can have dependent attributes.Independentattributes, on the other hand,

are those whose IDs do not appear in any<value/ > tag’snext attribute, i.e. those that always apply

regardless of the current values of other attributes. It follows from this that each annotation scheme must

haveat least oneindependent attribute. An attribute from which other attributes are dependent is called a

branchingattribute.

Attribute dependencies are resolved byrecursively expandinga list of attributes. Given an initial list of

n>=1 attributes / relations, this list is processed from top to bottom, the attribute at index X being the

current attribute. For each current attribute or relation, it is then determined whether itcurrentlyhas some

valid dependent attributes. This is done by checking whether the<value/ > tag corresponding to the

attribute’s current value has some non-emptynext attribute, specifying IDs of dependent attributes. If

the current<value/ > tag does have such a list, these dependent attributes are retrieved. This produces

another list of attributes, ordered in the sequence in which they are referenced in thenext attribute. This

list is thenappendedto the current attribute list at index X+1, i.e.directly after the current attribute, thus

increasing the overall length of the list. In the next iteration, the whole process is continued with X+1. If

the attribute at index X did have some dependent attributes, the new current atribute at X+1 will be the first

2This can be suppressed by deselecting theWarn on extra attributesoption in the MMAX2 Attribute Window.

6

of these. Note that dependent attributes can themselves have attributes dependent on them, so thatmultiple

dependenciescan be expressed.

One attribute can be dependent on several other attributes as long as these aremutually exclusive. This

means that one attribute can appear in thenext attribute of e.g. the<value/ > tag of attribute A and B,

as long as A and B do never apply simultaneously. A necessary (but not sufficient!) prerequisite for mutual

exclusion is that neither A nor B be independent attributes.

Individual values for one attribute are per definition mutually exclusive. Therefore, it is possible for one

attribute to appear in thenext attribute of more than one<value/ > tag of a given attribute.

4.2 Markable Creation

When a new markable is created, allindependentattributes will be applied to it with their respectivedefault

values (cf. Section 3). As in simple schemes, independent attributes in complex schemes can be added to the

annotation scheme in any order, and they will be displayed in the MMAX2 Attribute Window in the order

in which they appear in the annotation scheme. Note that default values can also havenext attributes, i.e.

there can be attributes that depend on some other attribute having the default value. Therefore, the initial

list of independent attributes is recursively expanded as described in Section 4.1 above. When no more

attributes can be added recursively, the resulting attributes are applied to the newly created markable. Note

that the newly created markable need not be selected in order to have the attributes applied to it.

4.3 Markable Selection

When an existing markable is selected via left-click in the MMAX2 GUI, its attributes are validated against

the annotation scheme defined for the level the markable belongs to. This is done by first retrieving the list

of all independent attributes, as described above. This list is iterated from top to bottom, the attribute at

index X being thecurrent attribute.

If an attribute of the same name as X is found on the currently selected markable, it is tried to set it to that

value. This will fail if the value found is not defined as a possible value of attribute X, and a message will

be displayed to the user.3 In any case, the attribute found on the markable will be marked internally as

processed. Finally, it is checked whether there are dependent attributes. If so, these are retrieved and added

to the list of attributes as described in Section 4.1 above.

If, on the other hand, no attribute with the same name as attribute X is found on the currently selected

markable, attribute X is set to default. This will never fail since the default value will always be defined in

the annotation scheme. The attribute found on the markable will also be marked internally asprocessed.

Then, a check for dependent attributes will be peformed, and any attributes found will be added to the list

as described above.

After all independent attributes have been recursively mapped to the currently selected markable, all at-

tributes found on that markable should be marked asprocessed. If this is not the case, the markable

contains one or more undefinedextra attribute(s), and a corresponding message will be displayed to the

user. Note that this message can be suppressed by unchecking the optionWarn on extra attributesin the

MMAX2 Attribute Window. Note also that there is one such option for each defined markable level, so

different settings can be applied to different levels.

3This can happen if markable files have been created externally and not via the MMAX2 GUI.

7

4.4 Markable Attribute Modification

A good deal of manual annotation work consists in modifying markable attributes via the MMAX2 At-

tribute Window. In order to modify a markable’s attributes, it has to be selected by left-click.4 The At-

tribute Window is then set to display the attributes retrieved by means of the process described in Section

4.3 above. Branching attributes, i.e. ones which have dependent attributes, are displayed with a<> before

their name.

4.4.1 NOMINAL Attributes

NOMINAL attributes can be modified by selecting a different than the currently selected value for them.

Depending on the subtype (LIST vs. BUTTON), this is done by selecting a different entry in the drop down

list, or clicking a different radio button. If the associated attribute is either not branching at all, or if the old

and new value do not havenext attributes, nothing else will happen. Otherwise, the display will change

depending on what thenext attributes on the old and the new value were.

If the old value had some dependent attributes which now do not apply any more (since the old value is

deselected), these dependent attributes5 are removed from the display. Internally, the attributes and their

respective values are stored temporarily, since some or all of them might also be dependent on thenew

value. Note that not necessarilyall attributes below the modified one are removed, but only those that are

(directly or indirectly) dependent on it.

If the new value has some dependent attributes, these are retrieved in the order in which they are referenced

in the next attribute of the new value. It is possible that one or more attributes are removed and added

at the same time, i.e. in cases where one or more attributes are in thenext attribute of both the old and

new value. In this case, as many values as possible from the old attributes are transferred to the new ones.

The resulting list of new attributes is then recursively expanded as described in Section 4.1 above. In

the process, it is also tried to map as many remaining old attributes as possible. If the list is completely

expanded, the attributes contained in it are added to the display, thus reflecting the new valid attributes for

the currently selected markable. Note that unless theAuto-applyoption is selected, the new attributes will

only be applied to the markable after theApplybutton has been clicked. As long as this button has not been

clicked, any modifications to the attribute window can be undone by clicking theUndobutton. Note also

that in order for the modifications to be permanent, the markable level containing the modified markables

has to be saved.

4.4.2 MARKABLE POINTER Relations

Relations of type MARKABLEPOINTER are the only other attribute type that supports dependent at-

tributes. In contrast to NOMINAL attributes (cf. above), values of relations of type MARKABLEPOINTER

are modified by means of mouse actions in the MMAX2 GUI. If a markable is selected via left-click, and

if it has a relation of type MARKABLEPOINTER defined, the value for this relation can be modified by

adding or removing pointers to other (compatible) markables via right-click. Relevant changes occur if the

markable’s value changes fromnot setto setor vice versa. If the first pointer is added to the current mark-

able, the value changes fromnot setto set. If the last pointer is removed, it changes fromsetto not set. As

a result, attributes dependent on the old value are removed, and those dependent on the new one are added,

just like with NOMINAL attributes (cf. Section 4.4.1 above).

4Relations are an exception to this, as they are modified by means of right-clicks in the MMAX2 GUI.
5And the ones in turn dependent on them!

8

